Enkel Glidande Medelvärde Modell Exempel


Flyttande medelvärde I det här exemplet lär du dig hur du beräknar det glidande genomsnittet för en tidsserie i Excel. Ett glidande medel används för att utjämna oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Det går inte att hitta knappen Data Analysis Klicka här för att ladda till verktyget Analysverktyg. 3. Välj Flytta genomsnitt och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv ett diagram över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer topparna och dalarna utjämnas. Ju mindre intervallet desto närmare de rörliga medelvärdena är de faktiska datapunkterna. Möjliga medelvärden: Vad är de Bland de mest populära tekniska indikatorerna används glidande medelvärden för att mäta riktningen för den nuvarande trenden. Varje typ av glidande medelvärde (vanligtvis skrivet i denna handledning som MA) är ett matematiskt resultat som beräknas genom att medelvärda ett antal tidigare datapunkter. När det är fastställt, blir det resulterande genomsnittet plottat på ett diagram för att låta handlare titta på jämnare data istället för att fokusera på de dagliga prisfluktuationerna som är inneboende på alla finansmarknader. Den enklaste formen av ett glidande medel, lämpligt känt som ett enkelt glidande medelvärde (SMA), beräknas genom att man tar det aritmetiska medelvärdet av en given uppsättning värden. Till exempel för att beräkna ett grundläggande 10 dagars glidande medelvärde skulle du lägga till slutkurserna från de senaste 10 dagarna och sedan dela resultatet med 10. I Figur 1 är summan av priserna under de senaste 10 dagarna (110) Dividerat med antalet dagar (10) för att komma fram till 10-dagars genomsnittet. Om en näringsidkare vill se ett 50-dagars genomsnitt istället, skulle samma typ av beräkning göras, men det skulle innehålla priser under de senaste 50 dagarna. Det resulterande genomsnittet under (11) tar hänsyn till de senaste 10 datapunkterna för att ge handlare en uppfattning om hur en tillgång prissätts relativt de senaste 10 dagarna. Kanske du undrar varför tekniska handlare kallar det här verktyget ett glidande medelvärde och inte bara en vanlig medelvärde. Svaret är att när de nya värdena blir tillgängliga måste de äldsta datapunkterna släppas från uppsättningen och nya datapunkter måste komma in för att ersätta dem. Således flyttar datasatsen ständigt för att redogöra för nya data när den blir tillgänglig. Denna beräkningsmetod säkerställer att endast den nuvarande informationen redovisas. I figur 2 flyttas den röda rutan (representerande de senaste 10 datapunkterna) till höger om det nya värdet på 5 och det sista värdet av 15 släpps från beräkningen. Eftersom det relativt lilla värdet på 5 ersätter det höga värdet på 15, förväntar du dig att genomsnittet av datamängden minskar, vilket det gör, i det här fallet från 11 till 10. Vad ser Moving Averages Like när värdena på MA har beräknats, de är plottade på ett diagram och sedan anslutna för att skapa en rörlig genomsnittslinje. Dessa kurvor är vanliga på diagrammen för tekniska handlare, men hur de används kan variera drastiskt (mer om detta senare). Som du kan se i Figur 3 är det möjligt att lägga till mer än ett glidande medelvärde till ett diagram genom att justera antalet tidsperioder som används i beräkningen. Dessa böjda linjer kan tyckas distraherande eller förvirrande först, men du kommer att bli vana vid dem som tiden går vidare. Den röda linjen är helt enkelt genomsnittspriset under de senaste 50 dagarna, medan den blå linjen är genomsnittspriset under de senaste 100 dagarna. Nu när du förstår vad ett rörligt medelvärde är och hur det ser ut, introducera väl en annan typ av rörligt medelvärde och undersöka hur det skiljer sig från det tidigare nämnda enkla glidande medlet. Det enkla glidande medlet är extremt populärt bland handlare, men som alla tekniska indikatorer har det sina kritiker. Många individer hävdar att användbarheten av SMA är begränsad eftersom varje punkt i dataserien är densamma, oavsett var den uppträder i sekvensen. Kritiker hävdar att de senaste uppgifterna är mer signifikanta än de äldre uppgifterna och bör ha större inverkan på slutresultatet. Som svar på denna kritik började näringsidkare lägga större vikt vid de senaste uppgifterna, som sedan lett till uppfinningen av olika typer av nya medelvärden, varav den mest populära är det exponentiella glidande genomsnittet (EMA). (För vidare läsning, se Grunderna för viktade rörliga medelvärden och vad som är skillnaden mellan en SMA och en EMA) Exponentiell rörlig genomsnitts Det exponentiella rörliga genomsnittsvärdet är en typ av rörligt medelvärde som ger större vikt till de senaste priserna i ett försök att göra det mer responsivt till ny information. Att lära sig den något komplicerade ekvationen för att beräkna en EMA kan vara onödig för många handlare, eftersom nästan alla kartläggningspaket gör beräkningarna för dig. Men för dig matte geeks där ute, här är EMA-ekvationen: När du använder formeln för att beräkna den första punkten hos EMA kan du märka att det inte finns något värde tillgängligt för att använda som tidigare EMA. Detta lilla problem kan lösas genom att starta beräkningen med ett enkelt glidande medelvärde och fortsätter med ovanstående formel därifrån. Vi har försett dig med ett provkalkylblad som innehåller verkliga exempel på hur man beräknar både ett enkelt glidande medelvärde och ett exponentiellt glidande medelvärde. Skillnaden mellan EMA och SMA Nu när du har en bättre förståelse för hur SMA och EMA beräknas, kan vi titta på hur dessa medeltal skiljer sig. Genom att titta på beräkningen av EMA kommer du att märka att större vikt läggs på de senaste datapunkterna, vilket gör det till en typ av vägt genomsnitt. I Figur 5 är antalet tidsperioder som används i varje genomsnitt identiskt (15), men EMA svarar snabbare på de förändrade priserna. Lägg märke till hur EMA har ett högre värde när priset stiger och faller snabbare än SMA när priset sjunker. Denna respons är den främsta anledningen till att många handlare föredrar att använda EMA över SMA. Vad betyder de olika dagarna? Förflyttande medelvärden är en helt anpassningsbar indikator, vilket innebär att användaren fritt kan välja vilken tidsram de vill ha när de skapar genomsnittet. De vanligaste tidsperioderna som används i glidande medelvärden är 15, 20, 30, 50, 100 och 200 dagar. Ju kortare tidsintervallet användes för att skapa medelvärdet desto känsligare blir det för prisändringar. Ju längre tidspanelen, desto mindre känslig eller mer utjämnas, blir medelvärdet. Det finns ingen rätt tidsram att använda när du ställer in dina glidande medelvärden. Det bästa sättet att ta reda på vilken som passar dig bäst är att experimentera med ett antal olika tidsperioder tills du hittar en som passar din strategi.8.4 Flytta genomsnittsmodeller I stället för att använda förflutna värden för prognosvariabeln i en regression, Den genomsnittliga modellen använder tidigare prognosfel i en regressionsliknande modell. Y c et theta e theta e dots theta e, där et är vitt brus. Vi hänvisar till detta som en MA (q) modell. Naturligtvis observerar vi inte värdena på et, så det är inte riktigt regression i vanligt bemärkande. Observera att varje värde av yt kan betraktas som ett viktat glidande medelvärde av de senaste prognosfelen. Rörliga genomsnittsmodeller ska emellertid inte förväxlas med glidande medelutjämning som vi diskuterade i kapitel 6. En rörlig genomsnittsmodell används för att prognosera framtida värden medan den genomsnittliga utjämningen används för att uppskatta trendcykeln för tidigare värden. Figur 8.6: Två exempel på data från rörliga genomsnittsmodeller med olika parametrar. Vänster: MA (1) med y t 20e t 0.8e t-1. Höger: MA (2) med y t e t-e t-1 0.8e t-2. I båda fallen distribueras e t normalt vitt brus med medel noll och varians en. Figur 8.6 visar vissa data från en MA (1) modell och en MA (2) modell. Ändring av parametrarna theta1, prickar, thetaq resulterar i olika tidsseriemönster. Liksom med autoregressiva modeller ändrar variansen av felet termen enbart seriens skala, inte mönstren. Det är möjligt att skriva en stationär AR (p) modell som en MA (infty) modell. Med hjälp av upprepad substitution kan vi exempelvis visa detta för en AR (1) - modell: begin yt amp phy1y et amp phi1 (phi1y e) et amp phy12y phi1e et amp phi13y phi12e phi1e et amptext end Tillhandahållet -1 lt phi1 lt 1, värdet av phi1k blir mindre eftersom k blir större. Så småningom uppnår vi yt och phi1 phi12 e phi13 e cdots, en MA (infty) - process. Det omvända resultatet hålls om vi lägger några begränsningar på MA parametrarna. Då kallas MA-modellen inverterbar. Det vill säga att vi kan skriva någon inverterbar MA (q) process som en AR (infty) - process. Omvändbara modeller är inte bara för att vi ska kunna konvertera från MA-modeller till AR-modeller. De har också vissa matematiska egenskaper som gör dem enklare att använda i praktiken. Invertibilitetsbegränsningarna liknar stationaritetsbegränsningarna. För en MA (1) modell: -1lttheta1lt1. För en MA (2) modell: -1lttheta2lt1, theta2theta1 gt-1, theta1-teteta1 1. Mer komplicerade förhållanden håller för qge3. Återigen kommer R att ta hand om dessa begränsningar vid uppskattning av modellerna. Förskjutande medel och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörlig - genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet av Y vid tiden t1 som är gjord vid tiden t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå För en prognos av tidsserie Y som gjordes snarast möjligt före datum med en given modell.) Detta medel är centrerat vid period-t (m1) 2, vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna Värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara ca 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotkvoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel konfigurera ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu jämnare prognoser och mer av en eftersläpande effekt: Medelåldern är nu 5 perioder ((91) 2). Om vi ​​tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till den senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid Tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. Som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervall som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallen för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- Stegvisa prognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligen enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. För vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här beräknas de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. Respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. Kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 antar att trenden ändras endast mycket långsamt över tiden, medan modeller med Större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så att denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som beräknas beräkna en lokal trend. Om du 8220eyeball8221 ser det här, ser det ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell Har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi ​​till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. Utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval Av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär. Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara oskäligt att extrapolera kortsiktiga linjära Trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte all mjukvara beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (Er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.)

Comments

Popular Posts